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rs or indicators (TTIs) are effective tools making the continuous monitoring of the
f chilled products possible throughout the cold chain. Their correct setting is of

critical importance to ensure food quality.
The objective of this study was to develop amodel to facilitate accurate settings of the CRYOLOG biological TTI,
TRACEO®. Experimental designs were used to investigate and model the effects of the temperature, the TTI
inoculum size, pH, and water activity on its response time.

Themodelling process went through several steps addressing growth, acidification and inhibition phenomena
in dynamic conditions. The model showed satisfactory results and validations in industrial conditions gave
clear evidence that such amodel is a valuable tool, not only to predict accurate response times of TRACEO®, but
also to propose precise settings to manufacture the appropriate TTI to trace a particular food according to a
given time temperature scenario.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Foodborne diseases have become a major concern in the food
industry and have inflicted significant burdens on society. According
to studies made by the World Health Organisation, 30% of the
population in industrialized countries suffer from food borne diseases
every year (WHO, 2007). For example, in Europe, 6860 outbreaks were
reported in 2004, affecting 42,447 people, thirteen of whom died
(EFSA, 2006).

Refrigerated goods are often involved in food poisoning episodes.
Hence, to prevent economic losses and to reduce the impact of
foodborne diseases, the cold chain must be fully respected. Moreover,
with recent regulatory changes, food business processors are now
urged to develop traceability tools to monitor the goods' temperature
from the factory all the way through to the consumer. Time
Temperature Indicators or Integrators (TTIs) can bring about a solution
to this new need.

TTIs can be defined as simple and inexpensive devices used to
showmeasurable time temperature dependent changes related to the
food to which they are attached (Taoukis and Labuza, 1989).

These changes are usually expressed by a visible response such as a
mechanical deformation, a colour change or movement (Taoukis and
t R&D, 58, Boulevard Gustave
: +33 1 43 96 70 90.
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Labuza, 1989). Depending on the involved working principle, they can
be classified as biological, chemical or physical systems (Yan et al.,
2008). Several TTIs have been developed and patented, the principles
and applications of which have been largely reviewed (Taoukis and
Labuza, 2003).

Commercially available TTIs include a number of diffusion
(Monitor Mark® and Freshness Check® by the 3M Company, USA)
enzymatic (CheckPoint® by the VITSAB Company, Sweden) polymer
based (Lifelines Freshness Monitor® and Fresh Check® by Lifelines
Technology, USA) andmicrobiological systems (TRACEO® and (eO)® by
CRYOLOG) (Kerry et al., 2006).

Microbial TTIs advance all others because their response is closely
related to microbial food spoilage. In fact, bacterial growth andmetab-
olism in such TTIs directly reflect bacterial growth and metabolism in
the traced food (Vaikousi et al., 2008).

CRYOLOG is a young French company which develops and markets
a line of biological TTIs to trace sensitive goods. These TTIs are set
according to the food category to trace and provide clear information
about the product quality loss for both consumers and food retailers,
thus allowing appropriate monitoring of the cold chain.

In the current research, a particular biological TTI was studied.
TRACEO® is a small adhesive blue tag inwhich selected strains of lactic
acid bacteria (LAB) are trapped. Once put on the bar code of the
package of the traced chilled food and depending on the time
temperature profile the system goes through, TRACEO® delivers a
clear twofold response: an irreversible colour change from blue to
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pink and a simultaneous opacification reaction once the product has
experienced critical temperature abuses or once it has reached its use
by date. The opacification reaction prevents correct reading of the bar
code. The product is therefore rejected by the scanner at check out,
thus enabling automated and systematic detection of altered food in
markets. The visible colour change from blue to pink warns the
consumer that the food has become spoiled.

These two simultaneous changes depend on the acidification of the
TTI medium resulting from the LAB growth brought about by the
temperature storage conditions. Our study aims at using a new
modelling approach to predict the response time of TRACEO® taking
into account LAB growth, lactic acid production and pH decrease in the
TRACEO® medium. As a second step, the model provides the correct
settings (pH, water activity, inoculum size) to manufacture specific
TTIs so that their responses closely match the quality loss of the
particular product to be traced.

2. Materials and methods

2.1. TTI composition

The TRACEO® medium is based on a nutrient medium supplemen-
ted with a specific chromatic indicator and a precipitating molecule.
Further details can be found in the TRACEO® patent (R, Vaillant,
17.09.01, French Patent Office No. FR 2 829 854 B1).

A preliminary study (data not shown) made it possible to identify
the best micro organism to use in the TTIs. It was selected among
several strains of lactic acid bacteria for its acidification capacities and
its ability to grow in the TTI medium without being inhibited by the
chromatic indicator. Carnobacterium piscicola isolated from dairy
products showed the best profile and was therefore selected.

2.2. Experimental design

We investigated the effects of four factors of interest. The tested
levels are those usually used by CRYOLOG to produce industrial TTIs.
The effects of the temperature (3 °C and 20 °C), the pH (7.5 and 9), the
water activity (0.955 and 0.994) and the inoculum size (4 log CFU/ml
and 8 log CFU/ml) on the time of response of the TTI, were thus
studied with a full factorial design 24. Twelve central points were
added and eight extra runs were performed, as suggested by the
Statgraphics (5.1) software, to take into account the central level value
of each factor. The final experimental design was thus made up of 36
trials which were randomized and repeated.

According to the experimental design, sausage-like packagings
were prepared, inoculated and stored at different constant tempera-
tures. Inoculums were obtained from fresh cultures which were
diluted to the target values. These “laboratory TTIs” offered a larger
medium quantity than classical TTIs thus facilitating microbiological
and pH analysis. At pre-established times, aliquots were taken and
used for both pH measurements (Hanna Instruments HI-8418 pH
meter) and LAB countings (modified version of the normalized
method NF V04-503 using the TRACEO® Agar medium as C. piscicola
was inhibited by some of the MRS components). The colour change
and the opacification reaction of the TTIs were monitored by scoring
their colour evolution on a scale from 1 to 6 before putting them on
bar codes and scanning them to check scan rejection.

2.3. Global modelling approach

The modelling approach involved three major steps, including
simulations of (1) growth, (2) lactic acid production and (3) pH
decrease. Steps (2) and (3) both change the growth conditions. Step by
step simulation was therefore required to simulate the growth, the
lactic acid production and the pH decrease at the end of each step i to
be considered as initial conditions in the following step i+1.
2.4. Modelling approach

2.4.1. Modelling growth
Growth of C. piscicolawas modelled by the primary model of Rosso

(1995).
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where N(CFU/ml) is the bacterial concentration at the instant t, N0

(CFU/ml) the initial bacterial concentration, Nmax(CFU/ml) the max-
imum bacterial concentration, µmax(h−1) the maximum specific
growth rate and lag(h) the lag time.

The model parameters were estimated for each run by the least
square fitting method (LSQCURVEFIT, MATLAB 6.1, Optimization
Toolbox, The Math-works). The parameters lag and µmax were further
investigated by secondary models.

Eq. (2) made it possible to take into account the effects of the LAB
physiological state k on the lag time.

k ¼ μmaxd lag ð2Þ
The effects of the environmental factors on µmax were evaluated using
the gamma concept which was first proposed by Zwietering et al.
(1992) and further developed by several studies (Wijtzes et al., 1998,
2001; Zwietering et al., 1996).

μmax ¼ μoptd γT Tð Þd γpH pHð Þd γAH AHð Þd γaw awð Þ ð3Þ

where T (°C) is the temperature, aw is the water activity, AH (mM) the
concentration of undissociated lactic acid, µmax (h−1) the maximum
specific growth rate for a given condition of temperature, pH, water
activity and undissociated organic acid, and µopt(h−1) the optimal
growth rate observed in optimal growth conditions. µopt is a medium
and microbe dependent parameter.

Each γi term reflects the effect of the correspondent environmental
factor i on the maximum growth rate. The effects of temperature, pH
and water activity were modelled by the Cardinal Parameter Model
(CPM) (Rosso, 1995).
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where X is the studied environmental factor (temperature, pH or aw),
Xmin the level of the factor below which no growth occurs, Xmax the
level of the factor above which no growth occurs, Xopt the level of the
factor at which µmax is equal to its optimum value µopt and n a shape
parameter (n=2 for Temperature, n=1 for pH and n=1 for aw).

The lactic acid effect on the bacterial growth rate was modelled by
Eq. (5) (Presser et al.,1997;Breidt andFleming,1998; LeMarc et al., 2002).

γ AHð Þ ¼ 1−
AH½ �
MIC

� �s

ð5Þ

where MIC(mM) is the minimal theoretical concentration of undisso-
ciated lactic acid and s a shape parameter.

Xmin, Xmax, Xopt and MIC are the cardinal values of the strain. These
microbe dependent parameters, are independent from the growth
medium (Pinon et al., 2004; Neysens and De Vuyst, 2005) and were
consequently estimated in a BHI medium supplemented with 0.2%
glucose and 0.3% yeast extract according to the works of Cuppers and
Smelt (1993) Experiments were carried out in a Bioscreen C
(Labsystems, Helsinki, Finland). Four monofactorial designs were
used to evaluate the effect of each factor as shown in Table 1. The non



Table 1
Levels of temperature, pH, water activity and lactate concentration tested on the four
monofactorial designs to characterize the cardinal values of C. piscicola

Studied factors Factors range Other factors levels

Temperature (°C) 1.75–35.00 pH=7; aw=0.997; [AH]=0 mM
pH 5.10–10.40 T=30 °C; aw=0.997; [AH]=0 mM
aw 0.931–0.999 T=30 °C; pH=7; [AH]=0 mM
Lactic acid (mM) 0–120 T=30 °C; aw=0.999; pH=5.2

Fig. 1. The global model design.
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studied factors were kept at optimal levels. To estimate the lactic
acid effect, a pH of 5.2 was used so as to identify the effects of the
undissociated form of the lactic acid. Further details on the
methodology of the assessment of cardinal values can be found in
Membré et al. (2002).

Once the cardinal values assessed, the secondary model (Eq. (3)) was
used to simulate the maximum growth rate µ⌢max for each run of the
experimental design. These simulated µ⌢max values were compared to the
observed µmax values and the best µopt estimatewas assessed as the value
which minimizes the sum of squared errors between µ⌢max and µmax.

2.4.2. Modelling the buffer effect model
The buffer effect model was used to simulate the medium pH

knowing the total lactic acid concentration in themedium. Specific trials
were made to characterize the buffering properties of the TRACEO®

medium. Increasingquantities (100 µl) of lactic acid (1M)were added to
the medium and the pH decrease was monitored (Hanna Instruments
HI-8418 pH meter).

The experimental curves were best described by amodified logistic
model (Whiting, 1993).

pH Lacð Þ ¼ pH0 f
1þ e−k1 �λ

1þ e−k1 � Lac−λð Þ þ 1−fð Þ 1þ e−k2 �λ
1þ e−k2 � Lac−λð Þ

� 	
ð6Þ

where Lac (mM) is the total lactic acid concentration produced by C.
piscicola, pH0 the initial pH of the medium, λ (mM) the constant
minimal lactic acid concentration required to observe an acidification
reaction, k1 the constant acidification rate for the first part of the
kinetic, k2 the constant acidification rate for the second part of the
kinetic, and f the pH observed at the end of the first acidification curve.

Parameter f is difficult to interpret. For the sake of simplification, it is
replacedby its logit transformation shown inEq. (7)where theparameter
F estimates the relative importance of the two acidification processes

F ¼ log10
f

1−f

� �
: ð7Þ

2.4.3. Modelling the lactic acid production model
Eq. (8) is commonly used in the literature, to predict lactic acid

concentrations (Vereecken and Van Impe, 2002; Poschet et al., 2005).

dLac
dt

¼ Yp
dN
dt

ð8Þ

where Yp (mM/cell.h) is the lactic acid quantity produced by cellular
division and time unit.

The bacterial strain characteristics and the TRACEO® medium
composition are in line with the hypothesis required to use such a
model. Indeed, C. piscicolahas amainly homofermentativemetabolism
with the lactic acid being the only end product. Moreover, themedium
rich composition prevents from substrate limitations. The use of the
model of Vereecken and Van Impe (2002) is therefore fully justified.

Step by step evaluations of the bacterial population, the produced
lactic acid and the consequent pH drop were performed. By minimiz-
ing the sum of the squared errors between observed and simulated pH
values for the 36 first trials of the experimental design, Yp was
assessed. The remaining set of 36 runs was left aside for validation.
Only undissociated lactic acid inhibits the growth. The total lactate
concentration was therefore transformed into inhibitory lactate
concentration with the Anderson Hasselbach relation shown in
Eq. (9) before integrating it in the secondary model.

pH ¼ pKaþ log
Lac
AH½ �

� �
ð9Þ

where the lactic acid pKa is 3.86.

2.5. Evaluating the response time of the TTI

To evaluate the accuracy of the response times of the TTIs,
experimentally observed response times were compared to those
simulated by the model.

First, observed response times were obtained for each run of the
experimental design according to the following procedure. In a former
study (data not shown) the previously described colour scale (1–6)
was used by operators to score the colour change of the TTIs in several
temperature scenarios. The corresponding pH changes and the final
response times were recorded for each experiment. Results have
shown that the final colour change is observed at a score of 5
corresponding to a TTI pH of 6.35 at which the opacification reaction
was completely achieved, as the scan rejected the bar code. A logistic
model was then developed to predict the response time of the TTIs by
using pH monitoring as shown in Eq. (10)

t ¼ 1
α

ln
pH−pHmin

pHmax−pH

� �
−β

� 	
ð10Þ

where pHmax is the asymptotic maximum pH (initial pH value), pHmin

the asymptotic minimum pH as t increases, t the time, pH the pH of
response of the TTI (pH=6.35), α the relative pH decrease rate and β
the time at which the absolute pH decrease rate is maximum.

This logistic model was thus applied to each run of the experimental
design to assess the parameters pHmax, pHmin, α and β of each trial to be
used to predict the correspondent observed response time.

Second, simulated response times were obtained directly from the
global model as explained in Fig. 1 using the remaining set of 36 runs
that were not used to generate the model. Given the initial conditions,
namely the inoculum size, the water activity, the temperature and the
initial pH, and assuming that the initial undissociated lactic acid
concentration is zero, it was possible to simulate the instantaneous
growth rate µmax,t for a δt time, and to deduce the cell density Nt using



Fig. 2. Example of a fitting of experimental viable counts (log CFU/ml) and pH (.) on the
growth and pH evolution models (dashed lines) for a 4 log inoculum TTI stored at 20 °C.
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the growthmodels. The lactic acid production model was then used to
evaluate the lactic acid produced during this period. Finally, the
Anderson Hasselbach equation converted the total lactic acid
concentration Lac into undissociated lactic acid concentration [AH]
while the buffer effect model transformed the total lactate concentra-
tion Lac to the correspondent pH value. As long as the pH was higher
than 6.35, (the particular pH value at which the colour of the TTI
changed from blue to pink), another simulation cycle was performed,
taking into account the new values of pHt and the new concentration
of undissociated lactic acid [AH]t. The initial values of the temperature
and the water activity remained unchanged. The simulated response
timewas thus calculated when the simulated pH value reaches 6.35 as
the sum of all the cycles' durations.

As a final step, simulated and observed response times were
compared for each run and the Bias and the Accuracy Factors
(respectively Bf and Af) were used to evaluate the model's goodness
of fit. These factors provide an indication of the deviation between the
predictions and the observations (Ross, 1996)

Bf ¼ 10
∑ log tsimulated=tobservedð Þ

n
ð11Þ

Af ¼ 10
∑j log tsimulated=tobservedð Þj

n
: ð12Þ

2.6. Model validation

We evaluated the model's ability to provide correct TRACEO®

settings suitable to a specific product (shelf life of 10.5 days) with a
specific product time temperature profile (one third of the shelf life at
4 °C and the rest of the shelf life at 8 °C). New experiments were
carried out.

The time temperature scenario was given as an input to the model
which provided several combinations of the possible settings to
produce the adequate TTI for such a food under the specified time
temperature profile. Twenty industrial prototypes of TTIs were then
manufacturedwith respect to themodel settings, put on bar codes and
stored according to the time temperature scenario.

At different time intervals, the TTI colour was monitored with
regard to the 1–6 colour scale reference. The TTI ability to prevent
correct reading of the bar code was also checked. Once the colour
score reached the value of 5 and the scan rejected the bar code, the
experimental response time was assessed. All observed response
times were then compared to the theoretical response time (shelf life
of the food=10.5days).

3. Results and discussion

The global model involves several parameters to be estimated. As
for the growth models, the parameters are the optimal growth rate
µopt, the C. piscicola physiological parameter k, the maximum
population density Nmax and the cardinal values (Xmin, Xopt, Xmax,
MIC and the shape parameter s). The four parameters of the buffer
effect model are F, k1, k2 and λ. Finally, the only parameter involved in
the lactic acid production model is Yp.
Table 2
Cardinal values of Carnobacterium piscicola

Factors
(X)

T (°C)
[CL 95%]

pH
[CL 95%]

aw
[CL 95%]

[AH] (mM)
[CL 95%]

Xmin −5.42 [−8.07;−2.78] 5.12 [4.90; 5.33] 0.924 [0.916; 0.933] –

Xopt 31.61 [29.01; 34.22] 7.27 [6.42; 8.13] 0.997 –

Xmax 36.47 [33.13; 39.82] 10.24 [9.74; 10.73] 0.997 –

MIC – – – 7.77 [7.24; 8.30]
s – – – 0.48 [0.42; 0.54]
3.1. The growth parameters

The Cardinal values were obtained by fitting the experimental data
of the four monofactorial designs to the secondary growth model.
Results are shown in Table 2. These results are in line with cardinal
values of LAB reported in the literature (Desmazeaud and de Roissart,
1994).

µopt is a medium and microbe specific parameter. In our work, its
accurate estimation is very important since an overestimated µopt will
make the model simulate faster growth leading to a premature pH
decrease and an underestimation of the TTI response time. On the
contrary, if the µopt is underestimated, the model will be a fail safe
model as the predicted response times time will be overestimated.

Correct µopt estimation requires environmental conditions, namely
pH, water activity and temperature to remain as constant as possible
throughout the runs used to generate the estimate. However, in most
trials, dynamic conditions were observed: the lactic acid, which is a
primary growth metabolite, is steadily released as C. piscicola cells
grow, causing a continuous pH decrease. Such a situation leads to poor
µopt estimation. To overcome this issue, only selected runs were used
to estimate this parameter. In fact, we observed that trials with an
inoculum size of 104 CFU/ml did not sustain a significant acidification
in the early exponential phase as shown in Fig. 2, the pH change
became significant (decrease of 0.5 pH unit) only in the late
exponential phase. As a result, we neglected the lactic acid production
in the runs with an inoculum size of 104 CFU/ml and used them to
estimate the µopt.

We validated this approximation as the fitting results presented in
Table 3 show that the best estimate is obtained with 4 log inoculum
runs. In fact, the root mean squared error values (RMSE) dropped from
0.1133 when using all the experiments to 0.0266 when using the 4 log
inoculum trials only. We therefore used the µopt value of 0.898 h−1 for
the rest of the work.
Table 3
Estimates of the optimal growth rate µopt and the associated RMSE for several subsets of
the experimental design

Runs µopt (h−1) RMSE

Inoculum 4 log +6 log +8 log 1.085 0.1133
Inoculum 4 log +6 log 1.020 0.0425
Inoculum 4 log 0.898 0.0266



Fig. 3. Distribution of the physiological parameter k. The bars represent the
observations and the line represent the fitting of the normal distribution N(2.28, 1.3).

Table 4
Parameters estimates of the buffer effect model

Parameter Estimation

λ (mM) 13.120
k1 0.027
k2 0.085
a −0.213
b 1.554
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An accurate evaluation of the lag phase is also important to
accurately estimate the acidification reaction start and to get correct
response times for the TTIs. The physiological parameter k which
relates the maximum growth rate to the lag (Eq. (2)), was thus
evaluated for the runs of the experimental design. Only one run out of
the 12 repetitions of the central point was taken into account, so as to
give the same weight to each trial conditions. As the parameter k is
always positive, the values were adjusted to a truncated normal
distribution (mu=2.28, sigma=1.3) depicted in Fig. 3. The normal
distribution was used because several authors have demonstrated in
different works that the physiological parameter k is normally
distributed (Powell et al., 2006; Tamplin et al., 2005). Hence, as our
global model is designed for a deterministic approach, we chose to use
the median value as an estimate of the parameter k=2.13.

The decimal logarithm of the maximum population density log
(Nmax) is also normally distributed (mu=9.24, sigma=0.19). It seems
that it is independent from the environmental factors at least at the
studied levels, so we used the median value log(Nmax)=9.27 as an
estimate for this parameter.
Fig. 4. pH evolution as a function of total lactate concentration. The line represents the
fittings according to the buffer effect model on experimental data (■).
3.2. The buffer effect model parameters

The evolution of the pH of the medium with increasing lactic acid
concentrations (Fig. 4) is a sigmoid which can be described by a
logistic model.

Once we had fitted the data to the adapted logistic model (Eq. (6)) we
observed constant acidification rates k1 and k2 for all the experiments.
Furthermore, the parameter λ which reflects the required lactic acid
concentration to initiate the acidification reaction, seemed to remain
unchanged. Hence, the fitting was performed again keeping the
parameters λ, k1 and k2 at fixed values. Only pH0 and F varied with
regards to the experimental pH.

Fitted pH0 was very close to the target initial pH value. We
therefore assumed that pH0 is the initial experimental pH. The data
also showed that the parameter F depends on pH0. A linear regression
was proposed as shown in Eq. (13)

F ¼ a:pH0 þ b: ð13Þ

Table 4 presents the estimates of the parameters of the buffer effect
model. The goodness of fit showed in Fig. 4 offers clear evidence that
the adapted logistic model is suitable to describe the pH evolution of
the TTI medium with regards to lactic acid production.

3.3. The lactic acid production parameter

The accurate estimation of the lactic acid production parameter
Yp is of paramount importance for the global model. In fact, a precise
estimation will provide correct information for the secondary growth
model, which will properly simulate the corresponding inhibitory
Fig. 5. Fitting of experimental viable counts (log CFU/ml) and pH (.) on the growth and
pH evolution models (dashed lines) for a TTI (6 log inoculum, aw=0.975, pH=8.25)
stored at 11.5 °C.



Fig. 6. Fitting of experimental viable counts (log CFU/ml) and pH (.) on the growth and
pH evolution models (dashed lines) for an 8 log inoculum TTI stored at 20 °C.

Fig. 7. Observed and simulated response times for runs 36 to 72.
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effect, thus leading to realistic estimates of growth and lactic acid
evolution. On the contrary, inadequate Yp estimation will make the
model simulate unrealistic lactic acid concentrations leading to
inaccurate growth predictions and inadequate response times of the
TTIs.
Fig. 8. Observed response times (o) for twenty industrial TTIs set according
We estimated the yield of lactic acid production Yp to 4.95.10−8 mM
h−1.CFU−1. Our results are in the same range as other authors' findings of
7.23.10−8 mmol h−1.CFU−1 (Vereecken and Van Impe, 2002). We believe
that the slight difference is most probably due to the use of different
growthmedia anddifferent lactic acid bacteria strains in the two studies.

3.4. Model evaluation

The goodness of fit of our model is quite satisfactory, with a RMSE
value of 0.266 for pH simulations and 0.119 for growth simulations.
Fig. 5 illustrates the goodness of fit for one particular trial of the
experimental design. The bias factor (1.17) and the accuracy factor
(1.04) indicate that there is a good agreement between predicted and
observed response times. Indeed, these two indicators show that the
predictions differ from the observations by 17% and that there is only a
2% deviation of predictions with reference to observations.

However, as shown in Fig. 6, when the initial inoculum is high,
(108 CFU/ml), the observed acidification reaction is faster than the
model's predictions at the beginning of the experiment. Indeed, even
if the model succeeds in accurately predicting the growth, it fails in
simulating the initial pH evolution. In this case, observed pH values
seem to fall off immediately whereas the model predicts an initial
shoulder phase , which leads to inaccurate fittings.

We believe that this initial quick pH drop is due to the inoculum
preparation procedure. In fact, inoculum 4 and 6 TTIs are inoculated
using the appropriate dilution of the preculture whereas inoculum 8
TTIs are directly inoculated from the preculture where the concentra-
tion of lactic acid is important. As a result, when transferred to the TTI
medium, the cells will passively release the lactic acid , which they
accumulated when they were in the preculture medium, thus causing
an artificial and immediate pH decrease in the TTI medium. These
findings lead us to conclude that a washing procedure should be
included when using high inoculums. The buffering capacities of the
medium should also be improved to avoid such an artificial pH drop.

Even if we acknowledge that our model sometimes fails in
accurately predicting the initial pH evolution in some trials, it always
succeeds in predicting the pH decrease in the 6.35 area, where the
response time of the TTI is observed. Our model is therefore able to
simulate correct response times. In fact, when comparing the
observed and simulated response times (Fig. 7) a good correlation is
obtained (R2=0.985) and proves the accuracy of the model.

3.5. Model validations

Finally, the model's ability to provide correct settings for TTIs given
the food shelf life and the storage conditions was checked. The ex-
perimentally observed response times of the prototypes were com-
pared to the theoretical shelf life of the food (10.5 days). Results
to the model. The line represents the target response time (10.5 days).
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presented in Fig. 8 are, as expected, very satisfactory. The values
ranged from 8.9 days to 14 days. The average observed time is
10.83 days and the median value is only 1% higher than the product
shelf life. Such results clearly prove that the observed responses
of industrial TRACEO®, set according to our model, are in agreement
with the predicted responses.

4. Conclusion

The aim of this paper was to provide an accurate tool to set
TRACEO® biological TTIs, given the food shelf life and a time tem-
perature scenario. To reach this goal, several models were used in
order to simulate the LAB growth, the acidification reaction and the
pH decrease in the TRACEO® medium. The Rosso primary model
(Rosso, 1995) and the secondary cardinal model (Rosso, 1995) were
used as growth models to take into account the effects of the
environmental conditions, while the Vereecken and Van Impe (2002)
model was used to assess lactic acid production. As for the buffer effect
model, the modified logistic model was well adapted to our data but
further research will focus on the improvement of the TRACEO®

buffering capacities to avoid artificial pH drops at the beginning of
some trials.

Further research will also be carried out to ensure optimal
evaluation of the global model parameters. A sensitivity analysis is
worth conducting so as to identify themost important parameters and
improve their estimation, trying to take into account the uncertainty
related to each parameter estimation as well. Moreover, our global
strategy could be changed to estimate the whole set of parameters at
once, thus avoiding biased estimates of the key parameter Yp , which is
the last parameter to be estimated in the current strategy, after all the
other parameters have been assessed with their possible associated
errors.

Despite these minor adjustments, the global model showed great
fitting capacities and it can now be used for accurate simulations of
TRACEO® response times for specific settings. Moreover, it proposes
precise settings to be used for TRACEO® to trace selected food.

Our research strategy will now focus on larger scale validations of
TRACEO® responses in conditions of drastic temperature abuses for
several settings and different shelf lives. Parallel studies on food will
also be conducted. As LAB are the major alteration micro organisms,
our lactic acid bacteria based TTI is likely to successfully mimic the
behaviour of the natural food flora of many goods. Our validated
device could fundamentally change the approach of food business
processors to setting the shelf lives of their products. They could then
rely on a “dynamic food shelf life” , which is specific to the traced food
under the very specific storage conditions it goes through, thus
improving the quality of their products.

Such a concept can also be used in other fields such as the phar-
maceutical field where the respect of the storage temperature of
medicines and vaccines is crucial.
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